
<latexit sha1_base64="0VHAf0RUGaokBq5vNAT5QVuhGkc=">AAACDHicbVDLSsNAFL3xWeur6tLNYBFdlURE3QgFRVxWsA9oQ5lMJ+3QySTMTIQS8gFu/BU3LhRx6we482+ctFG09cDAmXPu5d57vIgzpW3705qbX1hcWi6sFFfX1jc2S1vbDRXGktA6CXkoWx5WlDNB65ppTluRpDjwOG16w4vMb95RqVgobvUoom6A+4L5jGBtpG6p3AmwHnh+cpWibxql6Pznw9MDU2VX7DHQLHFyUoYctW7po9MLSRxQoQnHSrUdO9JugqVmhNO02IkVjTAZ4j5tGypwQJWbjI9J0b5ResgPpXlCo7H6uyPBgVKjwDOV2Ypq2svE/7x2rP0zN2EiijUVZDLIjznSIcqSQT0mKdF8ZAgmkpldERlgiYk2+RVNCM70ybOkcVRxTirOzXG5epnHUYBd2INDcOAUqnANNagDgXt4hGd4sR6sJ+vVepuUzll5zw78gfX+BYWdm0k=</latexit>

Fp = l0
<latexit sha1_base64="tpx45ZzkOrtCRBw5j2fQqa3m3MU=">AAAB8nicbVDLSsNAFL2pr1pfVZduBovgqiQi6rKgC5cV7APaUCbTSTt0MgkzN0IJ/Qw3LhRx69e482+ctFlo64GBwzn3MueeIJHCoOt+O6W19Y3NrfJ2ZWd3b/+genjUNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbnO/88S1EbF6xGnC/YiOlAgFo2ilXj+iOA7CLJmRQbXm1t05yCrxClKDAs1B9as/jFkacYVMUmN6npugn1GNgkk+q/RTwxPKJnTEe5YqGnHjZ/PIM3JmlSEJY22fQjJXf29kNDJmGgV2Mo9olr1c/M/rpRje+JlQSYpcscVHYSoJxiS/nwyF5gzl1BLKtLBZCRtTTRnaliq2BG/55FXSvqh7V3Xv4bLWuCvqKMMJnMI5eHANDbiHJrSAQQzP8ApvDjovzrvzsRgtOcXOMfyB8/kDTV6RRg==</latexit>p

<latexit sha1_base64="K6ZZn3G/B3ldvehhTufPdYTf+Bk=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyip5KIqMeCHjxWsLaQlrLZbtqlm03YfRFK6M/w4kERr/4ab/4bN20O2jqwMMy8x86bIJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY3+R++4lrI2L1gJOE9yI6VCIUjKKV/G5EcRSEWTI97Vdrbt2dgSwTryA1KNDsV7+6g5ilEVfIJDXG99wEexnVKJjk00o3NTyhbEyH3LdU0YibXjaLPCUnVhmQMNb2KSQz9fdGRiNjJlFgJ/OIZtHLxf88P8XwupcJlaTIFZt/FKaSYEzy+8lAaM5QTiyhTAublbAR1ZShbaliS/AWT14mj+d177Lu3V/UGrdFHWU4gmM4Aw+uoAF30IQWMIjhGV7hzUHnxXl3PuajJafYOYQ/cD5/AFf6kU0=</latexit>

p0

<latexit sha1_base64="/Su3hbvI5X5t5H0uUax8SvzdGTk=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyip5KIqMeCHjxWsLaQlrLZbtqlm03YfRFK6M/w4kERr/4ab/4bN20O2jqwMMy8x86bIJHCoOt+O6WV1bX1jfJmZWt7Z3evun/waOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY3+R++4lrI2L1gJOE9yI6VCIUjKKV/G5EcRSEmZye9qs1t+7OQJaJV5AaFGj2q1/dQczSiCtkkhrje26CvYxqFEzyaaWbGp5QNqZD7luqaMRNL5tFnpITqwxIGGv7FJKZ+nsjo5Exkyiwk3lEs+jl4n+en2J43cuESlLkis0/ClNJMCb5/WQgNGcoJ5ZQpoXNStiIasrQtlSxJXiLJy+Tx/O6d1n37i9qjduijjIcwTGcgQdX0IA7aEILGMTwDK/w5qDz4rw7H/PRklPsHMIfOJ8/UeKRSQ==</latexit>

l0

<latexit sha1_base64="cUVYUOI9Cao5zdAzYppEjlDspGw=">AAAB8nicbVBNS8NAFHypX7V+VT16WSyip5KIqMeCHjxWsLaQlrLZvrRLN5uwuxFK6M/w4kERr/4ab/4bN20O2jqwMMy8x86bIBFcG9f9dkorq2vrG+XNytb2zu5edf/gUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm9xvP6HSPJYPZpJgL6JDyUPOqLGS342oGQVhhtPTfrXm1t0ZyDLxClKDAs1+9as7iFkaoTRMUK19z01ML6PKcCZwWummGhPKxnSIvqWSRqh72SzylJxYZUDCWNknDZmpvzcyGmk9iQI7mUfUi14u/uf5qQmvexmXSWpQsvlHYSqIiUl+PxlwhcyIiSWUKW6zEjaiijJjW6rYErzFk5fJ43ndu6x79xe1xm1RRxmO4BjOwIMraMAdNKEFDGJ4hld4c4zz4rw7H/PRklPsHMIfOJ8/RziRQg==</latexit>

e0<latexit sha1_base64="+1EkUrLsFlWFp/SaH1uhTEyDEZE=">AAAB8XicbVBNS8NAFHypX7V+VT16WSyCp5KIqMeCHjxWsLXYhrLZvrRLN5uwuxFK6L/w4kERr/4bb/4bN20O2jqwMMy8x86bIBFcG9f9dkorq2vrG+XNytb2zu5edf+greNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj69x/eEKleSzvzSRBP6JDyUPOqLHSYy+iZhSEGU771Zpbd2cgy8QrSA0KNPvVr94gZmmE0jBBte56bmL8jCrDmcBppZdqTCgb0yF2LZU0Qu1ns8RTcmKVAQljZZ80ZKb+3shopPUkCuxknlAvern4n9dNTXjlZ1wmqUHJ5h+FqSAmJvn5ZMAVMiMmllCmuM1K2IgqyowtqWJL8BZPXibts7p3UffuzmuNm6KOMhzBMZyCB5fQgFtoQgsYSHiGV3hztPPivDsf89GSU+wcwh84nz/i7JER</latexit>e

218 The International Journal of Robotics Research 31(2)

Fig. 1. An example of the Bayes tree data structure, showing step 400 of the Manhattan sequence (see Extension 1 for an animation
of the full sequence together with the map). Our incremental nonlinear least-squares estimation algorithm iSAM2 is based on viewing
incremental factorization as editing the graphical model corresponding to the posterior probability of the solution, the Bayes tree. As a
robot explores the environment, new measurements often only affect small parts of the tree, and only those parts are re-calculated.

inclusion of calibration parameters or spatial separators as
used in T-SAM (Ni et al. 2007) and cooperative mapping
(Kim et al. 2010).

Gaussian case
When assuming Gaussian measurement models

fi(!i) ∝ exp
(

−1
2

‖hi(!i) −zi‖2
"i

)
, (3)

as is standard in the SLAM literature (Smith et al. 1987;
Castellanos et al. 1999; Dissanayake et al. 2001), the fac-
tored objective function to maximize (2) corresponds to the
nonlinear least-squares criterion

arg min
!

(− log f (!) ) = arg min
!

1
2

∑

i

‖hi(!i) −zi‖2
"i

,

(4)
where hi(!i) is a measurement function and zi a mea-

surement, and ‖e‖2
"

#= eT"−1e is defined as the squared
Mahalanobis distance with covariance matrix ".

In practice one typically considers a linearized version
of problem (4). For nonlinear measurement functions hi

in (3), nonlinear optimization methods such as Gauss–
Newton iterations or the Levenberg–Marquardt algorithm
solve a succession of linear approximations to (4) in order
to approach the minimum. At each iteration of the nonlinear

Fig. 2. Factor graph (Kschischang et al. 2001) formulation of the
SLAM problem, where variable nodes are shown as large circles,
and factor nodes (measurements) as small solid circles. The fac-
tors shown are odometry measurements u, a prior p, loop-closing
constraints c and landmark measurements m. Special cases include
the pose-graph formulation (without l and m) and landmark-
based SLAM (without c). Note that the factor graph can repre-
sent any cost function, involving one, two or more variables (e.g.
calibration).

solver, we linearize around a linearization point ! to get a
new, linear least-squares problem in !

arg min
!

(− log f (!) ) = arg min
!

‖A! − b‖2 , (5)

where A ∈ Rm×n is the measurement Jacobian consisting
of m measurement rows, and ! is an n-dimensional vector.
Note that the covariances "i have been absorbed into the
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Perception in surgical robotics requires:

• SLAM in nonrigid scenes (unsolved yet)

• substantial reliability and accuracy

• theoretical sound and explainable solution 
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It is obvious that each screw matrixX can be uniquely identified
by a vectorx = [x1, x2, x3, x4, x5, x6]T ∈ R6. The relationship
can be expressed as X = x∧, x = X∨ with operation ∧ and ∨.
Therefore, for convenience, we define an encapsulated exponen-
tial and logarithm mapping between T and x directly as

T = Exp(x) = exp(x∧), x = Log(T) = log(T∨).

The adjoint of Lie algebra, ad(x), is related to a binary
operation [·, ·], called Lie bracket, yielding the relation

[X,Y] = XY −YX = (ad(x)y)∧

which holds for any Y ∈ se(3), y = Y∨ ∈ R6. Exponentiating
ad(x), we would get a matrix Ad(T) called the adjoint of Lie
group. The adjoint matrix has a nice property

T ·Exp(y) = Exp (Ad (T)y)T (1)

which can be used to shift the position ofT andExp(·). Another
property of Ad(·) is

Ad(T1)Ad(T1) = Ad(T1T2)

which is used to collect two Ad(·) together.
The Baker–Campbel–Hausdorff formula (BCH) is used to

concatenate two matrix exponentials. The exact BCH formula
is expressed as a series, and a closed form approximation is

Exp (x)Exp (y) ≈
{
Exp

(
J−1l (y)x+ y

)
, if x→ 0

Exp
(
x+ J−1r (x)y

)
, if y→ 0

where Jl(·) and Jr(·) are called the left-hand and right-hand
Jacobian of the exponential coordinate parameterization.

The mappings betweenSE(3) and se(3), the adjoint operation
and the BCH formula are used to linearize PGO, which is the
prerequisite to apply an iterative nonlinear solver.

For SE(3), all the operations Exp(·), Log(·), ad(·), Ad(·),
Jl(·), and Jr(·) are calculated in closed form [61], [62].

C. Graph Theory

Let G be an undirected graph G(V, E), where V is a finite
set, and E is a set of unordered pairs (u, v), with u, v ∈ V . The
elements in V are termed vertices (or nodes), and the elements
in E are termed edges. In what follows, we will denote an edge
from u to v as euv . An edge euv is said to be incident to the
vertices u and v, while u and v are called the endpoints of euv .
The degree of a vertex in G is the number of edges incident to
that vertex. A subgraph ofG stands for a graph with only part of
vertices and edges from G. In particular, we will be interested in
three types of subgraphs, i.e., path, cycle, and tree. Formally,
a graph is said to be connected if there exists a path for any
pair of vertices in the graph. A path is a connected subgraph in
which there are exactly two vertices having degree of one, and
the rest of vertices having degree of two. A cycle is a subgraph
in which every vertex has an even degree. If a cycle is connected
and the degree of each vertex is exactly two, the cycle is called
a simple/elementary cycle, or a circuit. A tree is a connected
subgraph, which contains no cycles (i.e., acyclic subgraph). If a
tree of G contains all vertices in V , it is called a spanning tree

Fig. 1. Toy graph of PGO. For each relative poses Ti,j , the edge eij is
oriented as i ! j. When talking about topological information, such as cy-
cles/paths, we can safely operate on the undirected version by ignoring the
edge orientations, and lifting back to oriented edges when the cycles/paths are
computed. In a graph, paths/cycles are a collection of edges, which can be
described by a set or a vector on GF . For example, there are three simple
cycles in this graph. C1 = {e12, e25, e56, e16}, C2 = {e23, e34, e45, e25},
and C3 = {e12, e23, e34, e45, e56, e16}. Cycles can be concatenated by the
symmetric difference of sets: C3 = C1 ⊕ C2. In this graph, C1 and C2 are
two independent cycles forming a cycle basis of the graph. The vectorized
representation on GF , i.e., the cycle basis matrix, is presented in B, where
the blanks are zeros. C3 can be written as a vector C3 = [0, 1, 1, 1, 1, 1, 0, 0, 1].
Based on the arithmetics of GF , we have C3 = C1 + C2, which is in accordance
with the symmetric difference of sets.

of G. We will use P to denote a path, C to denote a cycle, and T
to denote a tree, respectively.

A subgraph, i.e., a path/cycle/tree, can be uniquely identified
by the set of edges it used, which induces an “incidence vector”
whose elements are assigned to either 0 or 1. For instance, a cycle
C can be expressed as an incidence vector [c1, c2, . . . , c|E|], with
ck = 1 (k = 1, 2, . . . , |E|) iff the kth edge is used by the cycle
C, and ck = 0 otherwise (see Fig. 1). The concept of finite field
(or Galois field) is useful to describe this phenomenon. A finite
field is basically a finite set equipped with arithmetic rules. In
particular, we are interested in the finite field of order 2, denoted
as GF = Z2 = {0, 1}, whose elements are 0 and 1 only. The
addition and multiplication on Z2 are defined, respectively, to
be the addition and multiplication on Z modulo 2. Obviously,
incidence vectors (to describe paths/cycles/trees) are vectors on
GF . Moreover, all the cycles inG can be described by a matrix on
GF with each row being a cycle incidence vector. This matrix is
called cycle matrix: B = [bi,j ], with bi,j = 1 iff the jth edge is
contained in the ith cycle, and bi,j = 0 otherwise. The rows ofB
span a vector space over the two-element finite field based on the
modulo two arithmetics, which is called cycle space. A basis
to the cycle space is called cycle basis. The cycle space of an
undirected graph is orthogonal complementary to the so-called
cut space. The cut space is not needed to understand this work,
but important to build connections with Gauss–Newton based
optimizers [12]–[14]. Interested readers are referred to [63], [64]
for accessible explanations. For a connected graph, the cycle
space has a dimension ν = |E|− |V|+ 1, and the cut space has
a dimension |V|− 1.

Let x1, x2 be two vectors on GF |E|, and X1, X2 be the corre-
sponding set representations. Then, the vector addition x1 + x2

on GF |E| corresponds to the symmetric difference of sets, i.e.,

C2C1C3
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BBT =

C1 C2

C1 4 1
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�x = B̄†b̄ = B̄T(B̄B̄T)�1b̄

Each iteration:

(Bai TRO ’21) (Bai TPAMI ’23)

�f

Ego-motion estimation

 (SLAM)

MΓt →RtPt þ tt1T:

Conversely, given the deformation field Φt("), the pose
(Rt, tt) is characterized by the rigid Procrustes analysis.
Thus, given M, the disentanglement is possible once
either the deformationΦt(") or the pose (Rt, tt) is known.
In this work, we focus on how to solve M and yt(").

3.2. Generalized Procrustes analysis

The deformable SLAM formulation (3) is essentially a
GPA problem with deformable transformations, see
Figure 1. In the classical literature, GPAs with both the
rigid transformation and the affine transformation are
well studied.

3.2.1. GPAwith the rigid transformation. In this case, from
formulation (3), we define yt(") as:

ytðPtÞ ¼
def RtPt þ tt1T,

!
Rt 2 SOðdÞ, tt 2Rd

"
:

There exists a closed-form solution for the case of n =
2 point-clouds. In general, for n ≥ 3, the solution is com-
puted iteratively by nonlinear least squares (NLS) optimi-
zation techniques, for example, Gauss–Newton or
Levenberg–Marquardt.

3.2.2. GPAwith the affine transformation. In this case, from
formulation (3), we define yt(") as:

ytðPtÞ ¼
def AtPt þ at1T,

!
At 2Rd×d , at 2Rd

"
:

The resulting GPA problem is degenerate. The optimal
solution is At = O, at = 0, and M = O, which however is

useless. In order to construct a meaningful solution, we need
to build a set of constraints, for example, in the rigid case,
the transformation preserves the distance.

We shall term GPA with the rigid transformation as
Rigid-GPA, and GPA with the affine transformation as
Affine-GPA.

4. Deformable transformation

4.1. Linear basis warp

The linear basis warp (LBW) in Bai and Bartoli (2022b) is a
generalization of a class of deformable transformations, for
example, the free-form deformations (FFDs) Rueckert et al.
(1999); Szeliski and Coughlan (1997) and the thin-plate
spline (TPS) Duchon (1976); Bookstein (1989).

Definition 2. (LBW in Bai and Bartoli (2022b)). Given a
query point p2Rd , the LBW is defined as:

ytðpÞ ¼
def WT

t βtðpÞ,
!
Wt 2Rl×d

"
, (4)

where βtð"Þ :Rd →Rl is an embedding to the
l-dimensional feature space. βt(") is typically designed from
radial basis functions (RBFs) Fornefett et al. (2001).

4.1.1. Regularization. Typically, the LBW is used together
with a regularization term:

Rt ¼ μttr
!
WT

t ΞtWt

"
, ðμt > 0Þ, (5)

where Ξt is a known matrix. Intuitively, the regulari-
zation Rt acts as a penalty to control the allowed
deformation.

Figure 1. Deformable SLAM as the generalized Procrustes analysis problem with deformable transformations. Our method is based on
correspondences whose movements reflect deformations. The movements of the correspondences, as plotted by the arrows from the
black to the red circles, are driven by a low-dimensional deformation fieldΦt("). The unknowns are colored in blue, including (a) the rigid
pose (Rt, tt), (b) the low-dimensional deformationΦt("), and (c) a canonical environment mapM. From the observation model, we notice
that (a) and (b) are entangled, which means we need to know one in order to infer the other. In this work, we instead propose to solve
yt("), a unified deformable transformation which encodes both poses and deformations. We derive that both yt(") and the environment
map M can be estimated globally in closed-from up to d scale ambiguities. The global coordinate frame is implicitly specified by the
transformation constraints to be illustrated in Figure 2.


